

ECE 244 Unix Environment Page 1 of 14

ECE 244 Programming Fundamentals Fall 2022

The ECF Unix Environment

1 Summary

This document provides information about how to log in to ECF, manipulate files and folders,
change permissions, compile programs without using an IDE, submit assignments, and manage
archives (using zip).

To avoid a grade of zero for your labs, please read carefully the section on submitting work.

Also, please read and follow the instructions on setting file permissions to avoid academic
offenses related to copying of your work.

2 Logging Into ECF

Before you can gain access to the ECF computer system, you must have your login name and a
password to log onto the system. Your login name (or just login) is a 6-8 character string that
is used to identify you to the computer system. Your password is an 8 character string known
only to you and is used to provide security for your computer account. No one knows what
your password is except you, not even the ECF system! You must never share your password
with anyone.

Once you log in, you will likely be presented with some introductory messages and
announcements from ECF, and then you will get an xterm window. If you do not get the xterm
window you can start one by clicking on “Applications” then “System Tools”, and then
“Terminal”. The xterm window has the UNIX prompt: “pxxx.ecf%” (e.g., p120.ecf% or
p150.ecf %) indicating that the system is ready to accept your commands. In the remainder of
this document, we will use just “%” as the prompt and it will appear in front of all commands
you type, but of course you will not type it.

3 The UNIX File System

3.1 The File Structure

The UNIX file system is organized into a tree-like structure of directories. At the top of the
tree is the root directory of the system, designated by a “/”. Various system directories, named
“bin”, “local”, “lib”, “u”, etc are contained in the root directory. In turn, files and other
directories exist in each of these directories, as shown in Figure 1.

Your files and directories exist in the system under your home directory, which has the same
name as your login name (assumed to be ast for the remainder of this document). This is also
shown in Figure 1: your files are in the directory called ast, which exists in the directory
called 1T1, which in turn is in the directory called u that exists in /.

ECE 244 Unix Environment Page 2 of 14

3.2 The Working Directory

When you are logged into the ECF system, you are always associated with one directory or
another. The directory you are currently associated with is called your working directory. When
you first login, your home directory is your working directory. You can then change your
working directory using the cd command (explained later). At any time, you can find out what
your working directory is using the print-working-directory command, pwd, as follows:

% pwd

The command will print the name of your current working directory to the screen.

3.3 File and directory locations

The location of a file or a directory is specified using a path through the tree. This path can be
full (or absolute) starting from the root of the tree “/”, or relative to the current directory, or to
some other directory. Thus, in Figure 1, the file a1.c can be specified in a number of ways,
assuming that your home directory is your working directory:

/

bin src lib u tmp var

1T3 1T2 1T1

ast

aps105 sort.cc

Figure 1: An example UNIX directory structure.

ece244

Your home directory (also
named ~ and ~ast)

Your files &
directories

The root of the File System

a1.c a2.c assign1 assign2

ECE 244 Unix Environment Page 3 of 14

/u/1T1/ast/aps105/a1.c full or absolute

aps105/a1.c relative to the working directory

~ast/aps105/a1.c relative to the home directory of ast

~/aps105/a1.c relative to your home directory

Note how ~ast specifies the home directory of user “ast” and how “~” by itself specifies
your home directory.

UNIX also provides two short-hands: “.” refers to the working directory, and “..” refers to the
parent directory of the working directory. These short-hands are useful in specifying relative
paths. For example, in Figure 1, if the working directory is aps105, then the file a1.c can also
be specified as ./a1.c, and the file sort.cc can be specified as ../sort.cc.

3.4 Listing Directory Contents

To obtain a listing of the names of all of the files in a directory, you can use the ls command:

% ls

Thus, using ls when you first login will print a list of all the files in your home directory.

3.5 Creating Directories

In order to keep your files better-organized, you should create directories to hold files relating
to various subjects, courses, etc. For example, to create a new directory, called newdir, in your
home directory, use the mkdir command at the prompt:

% mkdir newdir

Since newdir is contained in your home directory, newdir is referred to as a subdirectory of
your home directory, and your home directory is referred to as the parent directory of newdir.
Similarly in Figure 1, aps105 is the parent directory of the file a2.c while ece244 is a
subdirectory of the home directory ast.

3.6 Changing the Working Directory

To work within a directory, you must use the change-directory command, cd, to make it your
working directory. The cd command has the following syntax:

cd dirlocation

where dirlocation is the location of the directory you wish to make your working directory,
specified using a path in the directory tree as described above. For example, in Figure 1, if your
home directory is the working directory, and you can make assign1 your working directory,
by typing:

% cd ece244/assign1

ECE 244 Unix Environment Page 4 of 14

You may also accomplish the same thing by specifying the full path to the directory as follows:

% cd /u/1T1/ast/ece244/assign1

If your working directory is assign1, and you can make ece244 your working directory by
typing:

% cd ..

which takes you to the parent directory of your current directory; i.e., ece244.

Finally, you can always return to your home directory by typing:

% cd

with no directory location specified.

It is important to always know what your current working directory is (using the pwd
command, described earlier), and how to move to subdirectories of it, or to move to its parent
directory.

3.7 Moving, Copying, Deleting Files

Using UNIX commands, you can type commands to list your files, move, copy, delete, etc. For
example, the cp command is used to create a copy (duplicate) of a file. It has the following
syntax:

cp file1 file2

This takes a file named file1 and creates a new file called file2 that is an exact duplicate of
file1.

The mv command is used to move (or rename) a file, and has the following syntax:

mv file1 file2

This takes a file named file1 and creates a new file called file2 that is an exact duplicate of
file1. The original file1 is removed.

Finally, the rm command is used to delete (or remove) a file:

rm file

Be careful when using the rm command; files that you remove cannot be retrieved. Thus, it
pays to use the rm command with the “-i” option as follows:

rm –i file

The command will prompt for confirmation before the file is deleted.

3.8 Protecting Your Files

Every UNIX file has an owner (and group) associated with it. You are the owner of all files and
directories in your home directory. As the owner you may choose to allow or deny others to

ECE 244 Unix Environment Page 5 of 14

view your files. In order to protect your assignments from being copied by others, you should
use the chmod command to protect you files. When you create a new directory newdir, use the
chmod command as follows (assuming your working directory is the parent of newdir):

% chmod –R go-rwx newdir

This prevents others from reading or searching through newdir. You can use the command on
any existing directory as well to protect it and all the files contained in it.

Three sets of permissions are set: user, group, and other (abbreviated above as u/g/o). The
permission types that can be granted are read, write, and execute. With this understanding, the
line above can be interpreted as followed: from group and other, subtract read/write/execute
privileges. To check that we have set the privileges correctly, use the ls command in its long (-
l) form to get more details:

% ls -l

This will give output similar to below:

total 0
drwxr-xr-x 27 tsa eceprof 918 Aug 16 16:18 documents
drwxr-xr-x 7 tsa eceprof 238 Aug 18 20:01 lab1
drwxr-xr-x 13 tsa eceprof 442 Aug 16 18:32 lab2
drwxr-xr-x 4 tsa eceprof 136 Aug 16 14:24 tutorial

The important part is the sequence of letters in the left column. It starts with ‘d’ to indicate that
the entry is a directory. Next, the rwx indicates that the user (tsa) can read, write, and execute.
Next, r-x indicates that members of the group “eceprof” can read and execute. The final r-x
means that others (not user “tsa nor group eceprof”) can read and execute. Normally execute
(‘x’) means that you are allowed to run the program if it’s a binary file or a script – in the case
of directory, execute actually means you can enter the directory to view its contents.

Note that your directories should read drwx------, and your files should read -rw------- such that
only the owner (you) can read them.

3.10 Getting Help on UNIX Commands

You can get more information on any UNIX command by using the man command (for manual
page). For example, type

% man ls

to get information on the ls command. As the information is displayed, --More-- appears at
the bottom of the screen. At this point, you can press the spacebar to display the next screen, or
press q to quit.

Indeed, if you wish to find out more about the man command, type:

% man man

ECE 244 Unix Environment Page 6 of 14

3.11 Using zip/unzip to compress/decompress multiple files

Sometimes, it is more convenient to save multiple files into a single file, eg. for transmission
over e-mail or downloading via the web. The common ZIP program and file format for
Windows often accomplishes this, and has been implemented for UNIX as well.

Zip, which uses the extension .zip, stores and compresses multiple files and their folder
hierarchy within a single file, which can later be expanded. The command is zip to compress
and unzip to decompress

Some of the instructional material for the course is distributed this way. To get the files, simply
download the relevant zip file (here called foo.zip), place it in your ece244 folder, and run:

% unzip foo.zip

You can get more information by using the man command, or using the --help option.

4. Useful Tools

Please note that the functions of many tools listed below (editor, compiler, terminal,
debugger) can all be accessed from within the NetBeans Integrated Development
Environment (IDE) for greater simplicity and convenience. Lab materials assume that you
will be using NetBeans, though you may want to learn to use the individual components as
well.

4.1 The Terminal

As noted previously, the terminal and command line remain very important for Unix users.
While graphical user interfaces (GUIs) can be very handy, some things can only be done or
remain easiest for a skilled user to do from the command line. It is also useful when logging in
to computers remotely since text is much more compact to transmit than the instructions to
draw the GUI.

Another important use for the terminal is creating and testing shell scripts, which issue a series
of commands to automate certain repetitive tasks. By reducing the effort to accomplish
common tasks, effective terminal use and scripting can make you a more efficient programmer.
As you advance in your programming career, shell scripting is a very important skill to learn.
The submitece244f and exercise commands are so implemented – thus saving you
from typing a long and error-prone series of commands to submit your assignment.

Note that you may have several terminal windows open at a time. For instance, you may have
one for manipulating files, one for debugging, one for compiling, several running other jobs in
the background, etc.

ECE 244 Unix Environment Page 7 of 14

4.2 Text Editor

In addition to source code files, programmers often have to read and write a number of text
files – for test cases, Makefiles, data, documentation, etc. Text editors come in many different
styles and are a matter of personal preference. What is important is that you find one that works
well for you, and with which you are highly productive. Popular instances include:

gvim A graphical and customizable editor. It has mouse support, but you can also

accomplish an incredible number of things from the keyboard. Very fast and
productive once you learn, but has a steep learning curve.

emacs An extremely stable, long-standing open-source project, Emacs is very customizable
and has numerous plugins but can be very hard to learn initially. It would be
considered a “classic” but still sees wide use today.

gedit Has many of the same basic features as gvim and emacs but may be less daunting to
learn

netbeans The NetBeans IDE includes a powerful text editor.

You can try out the various editors by typing their name at the command prompt. Features
commonly considered “must-have” include:

• syntax highlighting: the ability to recognize and highlight language key words
• search & replace (preferably with regular expressions)
• auto-indent
• line numbering
• jump to line number
• bracket matching (ability to highlight or jump to a matching bracket or parenthesis)

Other popular productivity items sometimes found include:

• folding (the ability to ‘collapse’ a function definition into a single line, or ‘expand’ it
back)

• syntax-error highlighting (find syntax errors before compiling)
• source browsing (navigation by variable/function/class definition)
• auto-completion
• refactoring (the ability to rename variables or methods in a syntax- and scope-aware

way across files)

4.3 Compiler

For our C++ programs to run, the source code file(s) must be compiled and linked with the
standard libraries. Compilation is the process of converting human-readable source code into
binary instructions that the computer can execute directly (machine code). The standard
libraries are a set of functions that all C++ implementations agree to provide. They include, for
instance, the provisions for allocating and de-allocating memory, accessing files, printing to the
terminal, standard math functions, and many more. Linking means taking function calls that
cannot be found within the source files, finding them in a library, and inserting a pointer to the
library file at the appropriate point.

To compile C++ code, we use the C++ frontend to the GCC compiler suite by typing g++.

While we will rarely use the compiler directly (see section on IDE below), it is worth being
familiar with what is happening “behind the scenes”. These commands will most commonly be

ECE 244 Unix Environment Page 8 of 14

executed either by a Makefile (more detail later), or by the IDE. To compile a file in the
simplest case, simply call g++ and tell it what file to compile:

% g++ -std=c++11 hello.cpp

This will (if successful) produce an executable called a.out from the source file
hello.cpp. Generally when compiling for this course, we will add several other options as
listed below:

% g++ -std=c++11 -g –Wall hello.cpp –o hello

-g Generate debug symbol information (see

separate handout about the debugger)
-Wall Show all (W)arnings – more than the default,

may result in lots of compiler output, but will
often highlight potential errors

-o hello Save output as hello instead of a.out

We can of course specify more source files (just add after hello.cpp), if more than one is
required for the program.

4.4 Debugger

A debugger is a tool that helps you find errors (i.e., “bugs”) in your programs. It does so by
allowing you to control the execution of a program. You can make the program stop when it
reaches a particular point in the code: this is called a breakpoint. While at a breakpoint, you can
examine the values of variables and inspect the state of the program. You can resume execution
from the breakpoint, possibly to another breakpoint, or step through one statement at a time in
your program. You can also set watches to view the values of variables you are interested in.

The use of a debugger can save you hours of frustration. While a debugger can never tell you
what a bug is, it can help you quickly determine where the bug is located in your code.
Combined with your knowledge of what the program should be doing, you can quickly locate
and fix your bug.

Learning to use a debugger does take some time. However, this is time well-spent. It certainly
beats debugging your code by staring at it for hours at a time, by randomly changing lines in
the code, or by inserting print statements all over the code.

For this course, we use the very powerful and extremely common GNU Debugger (GDB). It is
free, open-source, and available for many different computer platforms. The debugger is an
important tool that is covered in greater detail in a separate document. It is also used by the
NetBeans IDE.

4.5 Integrated Development Environment (IDE)

An Integrated Development Environment (IDE) is a very powerful suite of tools meant to
enhance the developer’s productivity. As a minimum, an IDE will typically integrate a text
editor with syntax highlighting, tools for browsing source code, compiler/build system, and a
debugger. It will often also include collaboration tools such as version control. As the name
implies, these features are integrated so that the programmer does not need to switch programs
– it can all be done from a single “dashboard” with a consistent look and feel. By combining

ECE 244 Unix Environment Page 9 of 14

many functions into one, it makes switching between components (eg. moving from a compiler
error to the relevant source line in the editor, or using the editor to set a debugger breakpoint)
very easy.

Significant examples include Eclipse (free, open-source, cross-platform), XCode (freely
available for Apple computers, tablets, and phones), and Microsoft Visual C++ (licensing
options vary).

For ECE244, we recommend and support a free IDE called NetBeans 8.2. It provides syntax
highlighting, source browsing, extensive help features, integration with the GCC compiler, and
integration with the GDB debugger. The provided interface is very visual and intuitive, making
it easy and worthwhile to learn.

There is a separate tutorial on getting, installing, and starting with NetBeans. We strongly
recommend that you use NetBeans unless you have a strong preference for another
environment.

5. Preparing, Compiling, and Submitting an Assignment

5.1 Directory preparation

Use your login and password to log onto the ECF system.

In your home directory, create a new directory for ECE244 (this course!) by typing the
following at the prompt:

% mkdir ece244

Make sure that the directory is protected by typing:

% chmod go-rwx ece244

It is your responsibility to ensure that others cannot copy your work. If another student is
able to copy your work, and we determine that two submitted solutions stem from the same
source, then we have no option but to take action against both parties, since it is impossible
to tell who copied from whom.

Now use the ls command to see the new “ece244” directory in your list of files.

Change your working directory to ece244 using the following command:

cd ece244

If you type the ls commend now, you will get no output, since the directory is currently
empty; i.e., has no files in it.

It is a good idea to have a separate folder for each course, and for each course folder to have a
separate sub-folder for each lab or assignment.

For instance, your first lab files might be stored in ~/ece244/lab1

ECE 244 Unix Environment Page 10 of 14

5.2 Compiling

Note: You may also choose to use NetBeans (or another IDE) to create and compile your
code. In that case, you may safely skip the compiling section here.

You will use a simple example program whose only purpose is to print the message “Hello,
world!” to the screen. An initial version of this program is provided; simply download it into
your working directory (ece244/examples/helloworld) from
https://www.eecg.utoronto.ca/~yuan/teaching/ece244/lab1_examples/hello/

Use the ls command to ensure that the file exists

Compile the program by executing the command:

 % g++ -std=c++11 -g –Wall hello.cpp –o hello

This will create an executable called hello. You can run it with by typing:

 % ./hello

which runs the executable called hello in the working directory.

5.3 Testing the “Hello, World!” Program

The automarker program will test all code that you submit. It does so by compiling your
programs and then running them with various inputs, or test cases. Each time it runs your
program it compares the output to that of the reference solution. If your output matches the
reference output then your program passes the test case, otherwise it fails. To assist you in
testing your program, we make some of the test cases the automarker will use available to you.
To check if you program works correctly on these test cases, you use the exercise command.

If your output does not match the expected output exercise will tell you. The exercise
command has the following syntax:

~ece244i/public/exercise assignment# program_name

Let’s assume that our example program should be named hello, but, we mistyped our
compilation line as:

% g++ -g –Wall hello.cpp –o Hello

This will create a output file called Hello (note the uppercase “H”) when you compile it. If
you ran exercise with this file name, exercise will complain:

% g++ -g –Wall hello.cpp -o Hello
% ~ece244i/public/exercise 1 ./Hello

Error - exercise only supports the following executables: hello

Quitting!

ECE 244 Unix Environment Page 11 of 14

If exercise is run with an executable that does not match the name expected by the
automarker, it will print a message like the one above (note that the error messages may be
slightly different from the ones printed in this document). To fix the problem, simply specify
the correct name when you compile the program, or you can copy hello.cpp into another file
Hello.cpp using the cp command, and re-compile:

% g++ -g –Wall Hello.cpp -o Hello

Now run exercise again:

% ~ece244i/public/exercise 1 ./hello

Running Testcase 1

Running the following input on your program:
===

Your program produced the following output:
===
Hello
world!

<<<<<<<<< Comparing output to solution version 1 >>>>>>>>>>>>
Output does not match solution version 1

Output did not match any of the solution versions
The following 1 output(s) would have been accepted:

Solution version 1 output:
===
Hello, world!

Running diff on program output and solution version 1 output
(< actual output vs > expected output)
===
1,2c1
< Hello
< world!

> Hello, world!

############### Testcase 1 Results ##########################
Functionality: FAIL - Output did not match any solution version

################# Summary for 1 test(s) #####################

Functionality: FAIL: 1 test(s) failed!

ECE 244 Unix Environment Page 12 of 14

Note that exercise no longer prints an error message regarding the file name. It does,
however, print a different error message. This is an example of the second major pitfall of the
automarker: typos. Any difference from the expected output, no matter how minor, will cause
your program to fail a test case. Here the program had a line break instead of a comma in its
output.

Now fix the problem in the example program. Edit Hello.cpp and add the missing comma
on line 5. The result should look like this:

cout << "Hello, world!\n";

Now recompile and run exercise one more time:

% g++ -g –Wall hello.cpp -o hello
% ~ece244i/public/exercise 1 ./hello

Running Testcase 1

Running the following input on your program:
===

Your program produced the following output:
===
Hello, world!

<<<<<<<<< Comparing output to solution version 1 >>>>>>>>>>>>

############### Testcase 1 Results ##########################
Functionality: PASS - Output matches solution version 1

################# Summary for 1 test(s) #####################

 Functionality: PASS: All tests passed

This time exercise tells you that the output was correct. You should use exercise for
every assignment, but you should also remember that passing all of its test cases does not
guarantee a perfect mark – the automarker uses some test cases that are not available to
exercise. You should always perform additional testing.

ECE 244 Unix Environment Page 13 of 14

5.4 Submitting the Work

When you have completed and tested your program, you should submit it for marking using the
submit command. The submit command takes only one argument: the lab number.

~ece244i/public/submit assignment#

For example, to submit the files needed for your lab 1 to be marked, you would first make sure
all the necessary files are in your current directory (which for lab 1 are the hello.cpp file and
another file called convert.cpp). Then type:

 ~ece244i/public/submit 1

This command will search for all the files needed for the assignment in the current directory,
copy them to the course automarker directory, compile them, and run the exercise program
on them. If anything goes wrong in this process, submit will print an error message. You
should carefully examine the error message, take whatever corrective action is appropriate and
submit again. For example, if you had the hello.cpp program in the current directory, but
did not have convert.cpp in the directory, submit will complain:

% ~ece244i/public/submit 1

Checking for the expected files in the current directory
hello.cpp convert.cpp
can't find file 'convert.cpp'.
Error: Can't find all specified files

No files were submitted

It is very important to read the output from submit very carefully and ensure there are
no errors. If submit cannot find the appropriate files or they do not compile correctly,
the automarker will not be able to run your program and you will receive 0 on the lab.

If we copy the convert.cpp file into the current directory and run submit again, submit
will succeed and produce output like this:

% ~ece244i/public/submit 1

Checking for the expected files in the current directory
hello.cpp convert.cpp
The provided list of files is OK.

Attempting to build your code. Make output follows:
==
== g++ hello.cpp -o hello
g++ convert.cpp -o convert
--
--
The build appears to have been successful...

Running exercise on hello...
############### Testcase 1 Results ##########################
Functionality: PASS - Output matches solution version 1

ECE 244 Unix Environment Page 14 of 14

################# Summary for 1 test(s) #####################
Functionality: PASS: All tests passed

hello passed exercise
Running exercise on convert...
############### Testcase 2 Results ##########################
Functionality: PASS - Output matches solution version 1

############### Testcase 3 Results ##########################
Functionality: PASS - Output matches solution version 1
################# Summary for 2 test(s) #####################
Functionality: PASS: All tests passed

convert passed exercise

Submitting files

Verifying submission
submitece244f -l 1
total 16
-rw-r----- 1 submit ece244f 2748 Sep 7 10:38 convert.cpp
-rw-r----- 1 submit ece244f 173 Sep 7 10:38 hello.cpp

All filesizes match. All timestamps match submission time.
Submission was successful

Reading through the output above you can see that submit found all the necessary files,
compiled them successfully, and the resulting programs passed the exercise test cases. The
last line states that submission was successful; you should always check to make sure submit
prints this success message.

You can submit a lab as often as you like; the automarker will always mark only the last
submission.

